Atmospheric Chemistry and Physics (Sep 2022)

Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions

  • R. Man,
  • Z. Wu,
  • Z. Wu,
  • T. Zong,
  • A. Voliotis,
  • A. Voliotis,
  • Y. Qiu,
  • J. Größ,
  • D. van Pinxteren,
  • L. Zeng,
  • H. Herrmann,
  • A. Wiedensohler,
  • M. Hu

DOI
https://doi.org/10.5194/acp-22-12387-2022
Journal volume & issue
Vol. 22
pp. 12387 – 12399

Abstract

Read online

Particle hygroscopicity plays a key role in determining the particle deposition in the human respiratory tract (HRT). In this study, the effects of hygroscopicity and mixing state on regional and total deposition doses on the basis of the particle number concentration for children, adults, and the elderly were quantified using the Multiple-Path Particle Dosimetry model, based on the size-resolved particle hygroscopicity measurements at HRT-like conditions (relative humidity = 98 %) performed in the North China Plain. The measured particle population with an external mixing state was dominated by hygroscopic particles (number fraction = (91.5 ± 5.7) %, mean ± standard deviation (SD); the same below). Particle hygroscopic growth in the HRT led to a reduction by around 24 % in the total doses of submicron particles for all age groups. Such a reduction was mainly caused by the growth of hygroscopic particles and was more pronounced in the pulmonary and tracheobronchial regions. Regardless of hygroscopicity, the elderly group of people had the highest total dose among three age groups, while children received the maximum total deposition rate. With 270 nm in diameter as the boundary, the total deposition doses of particles smaller than this diameter were overestimated, and those of larger particles were underestimated, assuming no particle hygroscopic growth in the HRT. From the perspective of the daily variation, the deposition rates of hygroscopic particles with an average of (2.88 ± 0.81) × 109 particles h−1 during the daytime were larger than those at night ((2.32 ± 0.24) × 109 particles h−1). On the contrary, hydrophobic particles interpreted as freshly emitted soot and primary organic aerosols exhibited higher deposition rates at nighttime ((3.39 ± 1.34) × 108 particles h−1) than those in the day ((2.58 ± 0.76) × 108 particles h−1). The traffic emissions during the rush hours enhanced the deposition rate of hydrophobic particles. This work provides a more explicit assessment of the impact of hygroscopicity and mixing state on the deposition pattern of submicron particles in the HRT.