Journal of Allergy and Clinical Immunology: Global (Nov 2023)
DNA methylation is not associated with sensitization to or dietary introduction of highly allergenic foods in a subset of the CHILD cohort at age 1 year
Abstract
Background: In the first year of life, DNA methylation (DNAm) patterns are established and are particularly susceptible to exposure-induced changes. Some of these changes may leave lasting effects by persistently altering gene expression or cell type composition or function, contributing to disease. Objectives: In this discovery study, we investigated DNAm associations with sensitization to peanut, egg, or cow’s milk and hypothesized that genes demonstrating DNAm differences in immune cells may play a role in the development of food sensitization. Methods: Infant sensitization (a skin prick test wheal size that is at least 2 mm greater than the negative control) was measured to peanut, egg, and cow’s milk at age 1 year, and ages of food introduction were reported prospectively. PBMC DNAm was measured in blood samples at 1 year in 144 infants, oversampled for atopy or wheeze. Statistical analysis of Illumina 450k array DNAm data was conducted in R with adjustment for clinical and genetic covariables and a minimum effect size of 1%, false discovery rate of 5%, and medium-confidence false discovery rate threshold of 20%. Results: There were no DNAm differences between infants with and without peanut, egg, or cow’s milk sensitization. Borderline significant sites with high effect sizes were enriched for methylation quantitative trait loci, hinting at genetic factors influencing DNAm at these sites. DNAm patterns did not differ by peanut or egg introduction before or after 12 months. Conclusion: This small pilot study did not show differences in methylation by food sensitization or introduction, but it did demonstrate DNAm patterns linked to genetic variants.