Energies (Jun 2020)

A Piston-Swiveling-Cylinder Pair in a High Water-Based Hydraulic Motor with Self-Balanced Distribution Valves

  • Jiyun Zhao,
  • Bingjing Qiu,
  • Jiaxiang Man

DOI
https://doi.org/10.3390/en13123175
Journal volume & issue
Vol. 13, no. 12
p. 3175

Abstract

Read online

To improve the low viscosity and poor lubrication characteristics of high-water-based hydraulic liquid, the abrasion and leakage problems in hydraulic components need to be addressed. In a high water-based hydraulic motor with self-balanced distribution valve (HWBHM-SDV), there are two key friction pairs: the piston-crankshaft pair and piston-swivelling-cylinder (PSC) pair. To study the working performance of the PSC pair in HWBHM-SDV, we firstly designed the structural parameters. We found that, within the working speed 0–100 rpm, the leakage in the PSC pair is mainly caused by pressure-gradient flow, and the influence of the seal will not be significant when the seal length is 24 mm. Then, the friction coefficients of different matching materials were tested. It was found that the friction coefficient of 316L stainless steel with OVINO-GIC (OVINO-graphite intercalated compound) coating (316L-GIC)/PEEK reinforced with 30% carbon fibre (PEEK-30CF) is about 0.02~0.04, and the friction coefficient of 316L-GIC/316L-GIC is about 0.05–0.07. Finally, the influences of factors (clearance, temperature, pressure, and material) on leakage performance were analysed based on an orthogonal test method considering fluid-structure interaction. It was found that clearance has the most significant influence on leakage, followed by pressure and liquid temperature, and the difference between matching materials 316L-GIC/316L-GIC and 316L-GIC/PEEK-30CF is insignificant when the clearance is less than 8 μm and the working pressure is less than 10 MPa. Moreover, the difference in volume efficiency loss between theoretical analysis and calculated result considering fluid-structure interaction increases with the increase of working pressure and working speed. To ensure good working performance of a PSC pair, matching materials 316L-GIC/PEEK-30CF could be selected for pressures below 15 MPa, while 316L-GIC/316L-GIC could be used at 28 MPa.

Keywords