Materials & Design (Oct 2024)

Study on the mechanical behavior of millennium-ancient bricks based on microscopic characteristics

  • Jianwei Yue,
  • Mengen Yue,
  • Yage Zhang,
  • Jiachang Chen,
  • Liangshuai Zhang,
  • Yang Lei,
  • Shaopeng Xu,
  • Haonan Zhang

Journal volume & issue
Vol. 246
p. 113330

Abstract

Read online

The wide performance variation and inability for destructive testing make accurately determining ancient brick mechanical properties crucial for assessing structural safety in ancient masonry. This paper uses multiscale modeling with microscopic finite element analysis to quantitatively assess ancient brick macroscopic stress–strain relationship and compressive strength based on microstructural characteristics. The basic parameters such as porosity, pore size distribution, mineral composition and volume ratio, and microstructure characteristics of ancient bricks were obtained by corresponding methods. The Mori-Tanaka homogenization theory was applied to derive a three-phase equivalent brick matrix using elastic moduli and Poisson’s ratios of quartz, kaolinite, and montmorillonite at the microscale. The Representative Volume Element model with pores was created based on this matrix and pores, integrating Drucker-Prager plastic damage for finite element analysis of ancient brick mechanical behavior. The results indicate that stress–strain curves from the multi-scale micromechanics model resemble macroscopic experimental curves and maintain consistent peak strength. This shows that combining microscopic testing with finite element simulation for analyzing the mechanical properties of ancient bricks is feasible, providing a new non-destructive means of obtaining these properties.

Keywords