International Journal of Data and Network Science (Jan 2023)
Bayesian hierarchical spatiotemporal modeling for forecasting diarrhea risk among children under 5 in Bandung city, Indonesia
Abstract
The main objectives of this research are to identify significant spatial and temporal compo-nents associated with diarrhea and provide an accurate forecast. Using data from the Ban-dung city health surveillance system, the analysis reveals a decreasing trend in both the number of incidences and the estimated relative risks of diarrhea in most districts. Key fac-tors contributing to diarrhea variation include temporally structured, spatially structured, and unstructured effects of space-time interaction Type I. No clear seasonal pattern is observed in diarrhea incidence among children under five, emphasizing the need for consistent vigilance and preventive measures. Spatial clustering was observed in the eastern and western parts of Bandung city. The forecasting model predicts a continued decline in diarrhea incidence and relative risk throughout 2022.