Journal of Road Safety (Nov 2020)
Use of Spatial Analysis Techniques to Identify Statistically Significant Crash Hot Spots in Metropolitan Melbourne
Abstract
Understanding where, when, what type and why crashes are occurring can help determine the most appropriate initiatives to reduce road trauma. Spatial statistical analysis techniques are better suited to analysing crashes than traditional statistical techniques as they allow for spatial dependency and non-stationarity. For example, crashes tend to cluster at specific locations (spatial dependency) and vary from one location to another (non-stationarity). Several spatial statistical methods were used to examine crash clustering in metropolitan Melbourne, including Global Moran’s I statistic, Kernel Density Estimation and Getis-Ord Gi* statistic. The Global Moran’s I statistic identified statistically significant clustering on a global level. The Kernel Density Estimation method showed clustering but could not identify the statistical significance. The Getis-Ord Gi* method identified local crash clustering and found that 15.7 per cent of casualty crash locations in metropolitan Melbourne were statistically significant hot spots at the 95 per cent confidence level. The degree, location and extent of clustering was found to vary for different crash categories, with fatal crashes exhibiting the lowest level of clustering and bicycle crashes exhibiting the highest level of clustering. Temporal variations in clustering were also observed. Overlaying the results with land use and road classification data found that hot spot clusters were in areas with a higher proportion of commercial land use and with a higher proportion of arterial and sub-arterial roads. Further work should investigate network based hot spot analysis and explore the relationship between crash clusters and influencing factors using spatial techniques such as Geographically Weighted Regression.