Environmental Sciences Proceedings (Sep 2023)
On the Dependence of WRF Model Air Temperature and Precipitation Forecast Skill on the Weather Type for Northwestern Greece
Abstract
The WRF model temperature and precipitation forecast skill for the area of northwestern Greece is examined separately for each of the 10 objectively defined Weather Types (WTs). The WTs are defined for the 10-year period: 1 January 2009–31 December 2018. Their definition is achieved with the application of k-means Cluster Analysis on ERA5 meteorological data. The WRF model is applied in three domains (Europe—Greece—NW Greece) using the one-way nesting technique in a spatial resolution of 18, 6 and 2 km. Specifically, the model runs for 64 days (10% of the number of days attributed to the WT with the highest number of days) with the lowest distances from each WT’s cluster center. The WRF forecast data of 2 m air temperature and precipitation are compared with the available meteorological observations operated by the METEO unit at the National Observatory of Athens. The validation of 2 m air temperature is performed for 04UTC and 12UTC for the first and second days of forecast using the Cressman method, separately for each meteorological station and WT. The validation of precipitation is performed for daily accumulated values for the first and second days of forecast, using forecast data from the 3 × 3 = 9 surrounding grid points of each meteorological station and calculating categorical statistics based on contingency tables for each WT and for different thresholds. According to the results, there is a remarkable overestimation of 04UTC air temperature for the anticyclonic WTs, especially for the inland stations, while the precipitation forecast skill generally depends on the threshold and the WT characteristics.
Keywords