CT&F Ciencia, Tecnología & Futuro (Jan 2014)
BEHAVIOR OF ALUMINUM COATING BY CVD-FBR IN STEAM OXIDATION AT 700°C
Abstract
Aluminum coatings have been obtained using the Chemical Vapor Deposition of Fluidized Bed Reactor technique (CVD-FBR), on austenitic stainless steels (AISI 304, AISI 316 and AISI 317), in order to evaluate resistance to steam oxidation at 700ºC. The coatings were characterized in their morphology/composition and crystalline phases using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX) and X-ray Diffraction (XRD). In addition, thermodynamic simulation was performed using Thermo-Calc® software to make the deposition of the coating on said steels similar to optimal conditions. All specimens -with and without aluminum coating by CVD-FBR- were oxidized at 700ºC, in a steam atmosphere of nearly 100% for 1000 h. The aluminum coating prevented the formation of oxide islands or crust, and reduced steel mass gain. Coated AISI steel showed a 25% reduction in mass gain compared to the same steel uncoated and oxidized under the same conditions. AISI 316 and AISI 317 steels underwent loss of mass because the brittle oxide that was formed came loose.