Scientific Reports (Feb 2024)

Computational modelling of the antimicrobial peptides Cruzioseptin-4 extracted from the frog Cruziohyla calcarifer and Pictuseptin-1 extracted from the frog Boana picturata

  • María José Rengifo-Lema,
  • Carolina Proaño-Bolaños,
  • Sebastián Cuesta,
  • Lorena Meneses

DOI
https://doi.org/10.1038/s41598-024-55171-w
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract A computational study of the peptides Cruzioseptin-4 and Pictuseptin-1, identified in Cruziohyla calcarifer and Boana picturata respectively, has been carried out. The studies on Cruzioseptin-4 show that it is a cationic peptide with a chain of 23 amino acids that possess 52.17% of hydrophobic amino acids and a charge of + 1.2 at pH 7. Similarly, Pictuseptin-1 is a 22 amino acids peptide with a charge of + 3 at pH 7 and 45.45% of hydrophobic amino acids. Furthermore, the predominant secondary structure for both peptides is alpha-helical. The physicochemical properties were predicted using PepCalc and Bio-Synthesis; secondary structures using Jpred4 and PredictProtein; while molecular docking was performed using Autodock Vina. Geometry optimization of the peptides was done using the ONIOM hybrid method with the HF/6-31G basis set implemented in the Gaussian 09 program. Finally, the molecular docking study indicates that the viable mechanism of action for both peptides is through a targeted attack on the cell membrane of pathogens via electrostatic interactions with different membrane components, leading to cell lysis.

Keywords