Nature Communications (Feb 2024)

A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights

  • Yinchao Yao,
  • Tong Shi,
  • Wenxing Chen,
  • Jiehua Wu,
  • Yunying Fan,
  • Yichun Liu,
  • Liang Cao,
  • Zhuo Chen

DOI
https://doi.org/10.1038/s41467-024-45704-2
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Electrochemical reduction of carbon dioxide into ethylene, as opposed to traditional industrial methods, represents a more environmentally friendly and promising technical approach. However, achieving high activity of ethylene remains a huge challenge due to the numerous possible reaction pathways. Here, we construct a hierarchical nanoelectrode composed of CuO treated with dodecanethiol to achieve elevated ethylene activity with a Faradaic efficiency reaching 79.5%. Through on in situ investigations, it is observed that dodecanethiol modification not only facilitates CO2 transfer and enhances *CO coverage on the catalyst surfaces, but also stabilizes Cu(100) facet. Density functional theory calculations of activation energy barriers of the asymmetrical C–C coupling between *CO and *CHO further support that the greatly increased selectivity of ethylene is attributed to the thiol-stabilized Cu(100). Our findings not only provide an effective strategy to design and construct Cu-based catalysts for highly selective CO2 to ethylene, but also offer deep insights into the mechanism of CO2 to ethylene.