MATEC Web of Conferences (Jan 2020)
Design and construction of a continuous impregnation apparatus of woven fibres, using non-meshing double-sinusoidal toothed rollers
Abstract
Resin-impregnated fibres are extensively used in a variety of industrial applications as is demonstrated in the literature. Resin-fibre impregnation techniques are used in order to create homogeneous macro – materials and to take full advantage of the mechanical properties of the fibrous reinforcement (i.e. carbon, glass, organic or ceramic fibres). However, achieving highly impregnated fibres is proven quite challenging especially in continuous production techniques that are required for large production rates. The main challenge lies in achieving complete impregnation of the tightly arranged fibres mainly referring to the formed yarns containing multiple fibres, sometimes even twisted. This results in partially impregnated materials containing cavities that tend to exhibit inferior mechanical properties compared to the theoretical calculations, which assume fully impregnated materials. These cavities often lead to crack generation, acting as stress concentration sites, resulting in complete failure of the material at macro-level. In this paper a novel technique for continuous production of fully impregnated woven fibres is presented using non – meshing, co – rotating rollers. A laboratory-scale apparatus is designed and described thoroughly in the context of this work. The method resembles pultrusion in the sense that a reinforcement plain fibre mesh (glass) is co–processed with the liquid resin through a pair of co–rotating toothed rollers to produce a continuously reinforced 3D tape. The surface of the rollers is produced from a double-sinusoidal toothed surface (rack) using the Theory of Gearing in three-dimensions, which imposes significant differential sliding of the fibres without differential tension and facilitates fibre wetting. The geometry of the rollers is calculated not to damage the unprocessed fibres, while facilitating local widespreading of the stranded fibres in the three – dimensional space leading to the resin being able to fully penetrate the reinforcing fibre material.