Discrete and Continuous Models and Applied Computational Science (Jun 2024)
A new link activation policy for latency reduction in 5G integrated access and backhaul systems
Abstract
The blockage of the propagation path is one of the major challenges preventing the deployment of fifth-generation New Radio systems in the millimeter-wave band. To address this issue, the Integrated Access and Backhaul technology has been proposed as a cost-effective solution for increasing the density of access networks. These systems are designed with the goal of avoiding blockages, leaving the question of providing quality-of-service guarantees aside. However, the use of multi-hop transmission negatively impacts the end-to-end packet latency. In this work, motivated by the need for latency reduction, we design a new link activation policy for self-backhauled Integrated Access and Backhaul systems operating in half-duplex mode. The proposed approach utilizes dynamic queue prioritization based on the number of packets that can be transmitted within a single time slot, enabling more efficient use of resources. Our numerical results show that the proposed priority-based algorithm performs better than existing link scheduling methods for typical system parameter values.
Keywords