Environmental Research: Infrastructure and Sustainability (Jan 2023)

Natural ventilation versus air pollution: assessing the impact of outdoor pollution on natural ventilation potential in informal settlements in India

  • Kopal Nihar,
  • Alex Nutkiewicz,
  • Rishee K Jain

DOI
https://doi.org/10.1088/2634-4505/acc88f
Journal volume & issue
Vol. 3, no. 2
p. 025002

Abstract

Read online

Despite the proven benefits of natural ventilation (NV) as an effective low-carbon solution to meet growing cooling demand, its effectiveness can be constrained by poor outdoor air quality. Here, we propose a modeling approach that integrates highly granular air pollution data with a coupled EnergyPlus and differential equation airflow model to evaluate how NV potential for space cooling changes when accounting for air pollution exposure (PM2.5). Given the high vulnerability of low-income populations to air pollution and the dearth of energy and thermal comfort research on informal settlements, we applied our model to a typical informal settlement residence in two large Indian cities: New Delhi and Bangalore. Our results indicate that outdoor PM2.5 levels have a significant impact on NV potential especially in highly polluted cities like New Delhi. However, we found that low-cost filtration (MERV 14) increased the NV potential by 25% and protected occupants from harmful exposure to PM2.5 with a minor energy penalty of 6%. We further find that adoption of low-cost filtration is a viable low-carbon solution pathway as it provides both thermal comfort and exposure protection at 65% less energy intensity—energy intensity reduced to 60 kWh m ^−2 from 173.5 kWh m ^−2 in case of adoption of potentially unaffordable full mechanical air conditioning. Our work highlights ample opportunities for reducing both air pollution and energy consumption in informal settlements across major Indian cities. Finally, our work can guide building designers and policymakers to reform building codes for adopting low-cost air filtration coupled with NV and subsequently reduce energy demand and associated environmental emissions.

Keywords