Computational and Structural Biotechnology Journal (Jan 2023)
Genetic evidence implicating circulating lipids and lipid drug targets in pterygium
Abstract
There is limited knowledge about the impact of circulating lipids and lipid-modifying drugs on pterygium development, with conflicting results reported. Our study aimed to address these questions by applying the Mendelian randomization (MR) approach. A two-step MR model was developed. In the first step, bidirectional two-sample MR was employed to establish the causal relationship between circulating lipids and pterygium risk. In the second step, drug-target MR analysis was conducted to assess the causal effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitors on pterygium outcomes. Genetically predicted low-density lipoprotein cholesterol (LDL-c) levels were found to be significantly associated with an increased risk of pterygium (Inverse variance weighted [IVW] odds ratio [OR] = 2.227; P = 1.53 × 10–4). Similarly, higher total cholesterol (TC) levels exhibited a suggestive association with greater susceptibility to pterygium (IVW OR = 1.806; P = 1.70 × 10–3). Through drug-target MR, a positive causal association was noted between HMGCR-mediated LDL-c levels and pterygium (IVW OR = 6.999; P = 0.016), suggesting that statins may be effective in reducing pterygium risk. The present findings suggest that circulating TC and LDL-c are risk factors for pterygium. Additionally, the results indicate that HMGCR inhibitors, which lower LDL-c levels, have a potential protective effect on pterygium outcomes. Further research is warranted to elucidate the underlying mechanisms involved in pterygium pathogenesis, with a particular focus on cholesterol metabolism.