Nature Communications (Jun 2019)

Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis

  • Patrick Deelen,
  • Sipko van Dam,
  • Johanna C. Herkert,
  • Juha M. Karjalainen,
  • Harm Brugge,
  • Kristin M. Abbott,
  • Cleo C. van Diemen,
  • Paul A. van der Zwaag,
  • Erica H. Gerkes,
  • Evelien Zonneveld-Huijssoon,
  • Jelkje J. Boer-Bergsma,
  • Pytrik Folkertsma,
  • Tessa Gillett,
  • K. Joeri van der Velde,
  • Roan Kanninga,
  • Peter C. van den Akker,
  • Sabrina Z. Jan,
  • Edgar T. Hoorntje,
  • Wouter P. te Rijdt,
  • Yvonne J. Vos,
  • Jan D. H. Jongbloed,
  • Conny M. A. van Ravenswaaij-Arts,
  • Richard Sinke,
  • Birgit Sikkema-Raddatz,
  • Wilhelmina S. Kerstjens-Frederikse,
  • Morris A. Swertz,
  • Lude Franke

DOI
https://doi.org/10.1038/s41467-019-10649-4
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 13

Abstract

Read online

A genetic diagnosis remains unattainable for many individuals with a rare disease because of incomplete knowledge about the genetic basis of many diseases. Here, the authors present the web-based tool GADO (GeneNetwork Assisted Diagnostic Optimization) that uses public RNA-seq data for prioritization of candidate genes.