Frontiers in Oncology (Dec 2024)
Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study
- Mahmoud Bentriou,
- Véronique Letort,
- Stefania Chounta,
- Stefania Chounta,
- Stefania Chounta,
- Stefania Chounta,
- Brice Fresneau,
- Brice Fresneau,
- Brice Fresneau,
- Brice Fresneau,
- Duyen Do,
- Duyen Do,
- Duyen Do,
- Nadia Haddy,
- Nadia Haddy,
- Nadia Haddy,
- Ibrahima Diallo,
- Ibrahima Diallo,
- Neige Journy,
- Neige Journy,
- Neige Journy,
- Monia Zidane,
- Monia Zidane,
- Monia Zidane,
- Thibaud Charrier,
- Thibaud Charrier,
- Thibaud Charrier,
- Naila Aba,
- Naila Aba,
- Naila Aba,
- Claire Ducos,
- Claire Ducos,
- Claire Ducos,
- Vincent S. Zossou,
- Vincent S. Zossou,
- Vincent S. Zossou,
- Florent de Vathaire,
- Florent de Vathaire,
- Florent de Vathaire,
- Rodrigue S. Allodji,
- Rodrigue S. Allodji,
- Rodrigue S. Allodji,
- Rodrigue S. Allodji,
- Sarah Lemler
Affiliations
- Mahmoud Bentriou
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
- Véronique Letort
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
- Stefania Chounta
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
- Stefania Chounta
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Stefania Chounta
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Stefania Chounta
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Brice Fresneau
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Brice Fresneau
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Brice Fresneau
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Brice Fresneau
- Gustave Roussy, Department of Pediatric Oncology, Villejuif, France
- Duyen Do
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Duyen Do
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Duyen Do
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Nadia Haddy
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Nadia Haddy
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Nadia Haddy
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Ibrahima Diallo
- Department of Radiation Oncology, Gustave Roussy, Paris, France
- Ibrahima Diallo
- Gustave Roussy, Institut national de la santé et de la recherche médicale (INSERM), Radiothérapie Moléculaire et Innovation Thérapeutique, Paris-Saclay University, Villejuif, France
- Neige Journy
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Neige Journy
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Neige Journy
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Monia Zidane
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Monia Zidane
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Monia Zidane
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Thibaud Charrier
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Thibaud Charrier
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Thibaud Charrier
- Institut national de la santé et de la recherche médicale (INSERM), U900, Institut Curie, PSL Research University, Saint-Cloud, France
- Naila Aba
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Naila Aba
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Naila Aba
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Claire Ducos
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Claire Ducos
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Claire Ducos
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Vincent S. Zossou
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Vincent S. Zossou
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Vincent S. Zossou
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Florent de Vathaire
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Florent de Vathaire
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Florent de Vathaire
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Rodrigue S. Allodji
- Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France
- Rodrigue S. Allodji
- Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, France
- Rodrigue S. Allodji
- Gustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, France
- Rodrigue S. Allodji
- Polytechnic School of Abomey-Calavi (EPAC), University of Abomey-Calavi, Cotonou, Benin
- Sarah Lemler
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
- DOI
- https://doi.org/10.3389/fonc.2024.1241221
- Journal volume & issue
-
Vol. 14
Abstract
BackgroundCardiac disease (CD) is a primary long-term diagnosed pathology among childhood cancer survivors. Dosiomics (radiomics extracted from the dose distribution) have received attention in the past few years to assess better the induced risk of radiotherapy (RT) than standard dosimetric features such as dose-volume indicators. Hence, using the spatial information contained in the dosiomics features with machine learning methods may improve the prediction of CD.MethodsWe considered the 7670 5-year survivors of the French Childhood Cancer Survivors Study (FCCSS). Dose-volume and dosiomics features are extracted from the radiation dose distribution of 3943 patients treated with RT. Survival analysis is performed considering several groups of features and several models [Cox Proportional Hazard with Lasso penalty, Cox with Bootstrap Lasso selection, Random Survival Forests (RSF)]. We establish the performance of dosiomics compared to baseline models by estimating C-index and Integrated Brier Score (IBS) metrics with 5-fold stratified cross-validation and compare their time-dependent error curves.ResultsAn RSF model adjusted on the first-order dosiomics predictors extracted from the whole heart performed best regarding the C-index (0.792 ± 0.049), and an RSF model adjusted on the first-order dosiomics predictors extracted from the heart’s subparts performed best regarding the IBS (0.069 ± 0.05). However, the difference is not statistically significant with the standard models (C-index of Cox PH adjusted on dose-volume indicators: 0.791 ± 0.044; IBS of Cox PH adjusted on the mean dose to the heart: 0.074 ± 0.056).ConclusionIn this study, dosiomics models have slightly better performance metrics but they do not outperform the standard models significantly. Quantiles of the dose distribution may contain enough information to estimate the risk of late radio-induced high-grade CD in childhood cancer survivors.
Keywords