Redox Biology (Sep 2022)

Stable isotope dilution mass spectrometry quantification of hydrogen sulfide and thiols in biological matrices

  • Hind Malaeb,
  • Ibrahim Choucair,
  • Zeneng Wang,
  • Xinmin S. Li,
  • Lin Li,
  • W. Christopher Boyd,
  • Christopher Hine,
  • W.H. Wilson Tang,
  • Valentin Gogonea,
  • Stanley L. Hazen

Journal volume & issue
Vol. 55
p. 102401

Abstract

Read online

Background: Hydrogen sulfide (H2S), a gaseous signaling molecule that impacts multiple physiological processes including aging, is produced via select mammalian enzymes and enteric sulfur-reducing bacteria. H2S research is limited by the lack of an accurate internal standard-containing assay for its quantitation in biological matrices. Methods: After synthesizing [34S]H2S and developing sample preparation protocols that avoid sulfide contamination with the addition of thiol-containing standards or reducing reagents, we developed a stable isotope-dilution high performance liquid chromatography tandem-mass spectrometry (LC-MS/MS) method for the simultaneous quantification of Total H2S and other abundant thiols (cysteine, homocysteine, glutathione, glutamylcysteine, cysteinylglycine) in biological matrices, conducted a 20-day analytical validation/normal range study, and then both analyzed circulating Total H2S and thiols in plasma from 400 subjects, and within 20 volunteers before and after antibiotic-induced suppression of gut microbiota. Results: Using the new assay, all analytes showed minimal interference, no carryover, and excellent intra- and inter-day reproducibility (≤7.6%, and ≤12.7%, respectively), linearity (r2 > 0.997), recovery (90.9%–110%) and stability (90.0%–100.5%). Only circulating Total H2S levels showed significant age-associated reductions in both males and females (p < 0.001), and a marked reduction following gut microbiota suppression (mean 33.8 ± 17.7%, p < 0.001), with large variations in gut microbiota contribution among subjects (range 6.0–66.7% reduction with antibiotics). Conclusions: A stable-isotope-dilution LC-MS/MS method is presented for the simultaneous quantification of Total H2S and multiple thiols in biological matrices. We then use this assay panel to show a striking age-related decline and gut microbiota contribution to circulating Total H2S levels in humans.

Keywords