Leida xuebao (Dec 2022)

Survey of Radar HRRP Target Recognition Based on Parametric Statistical Model

  • Jian CHEN,
  • Lan DU,
  • Leiyao LIAO

DOI
https://doi.org/10.12000/JR22127
Journal volume & issue
Vol. 11, no. 6
pp. 1020 – 1047

Abstract

Read online

In the gradually becoming information-based and intelligent modern warfare, Radar Automatic Target Recognition (RATR) technology plays an increasingly important role in military applications, such as national security defense and strategic early warning. The High-Resolution Range Profile (HRRP) reflects the distribution of target scatterers along the radar line of sight and contains a target’s rich structural information, thus being valuable for target recognition and having become a research hotspot in the field of RATR. Parametric statistical modeling aims to construct a parametric mathematical model to characterize the distribution of observed data. It is an important way to estimate the data probability distribution and mine the hidden information of data. Radar HRRP target recognition based on a parametric statistical model directly uses the estimated probability distribution for statistical recognition or inputs the extracted information hidden in data into the classifier for target recognition. The parametric statistical model exhibits advantages in prior knowledge integration, flexible expansion, parameter uncertainty evaluation, and automatic order determination combined with Bayesian theory; therefore, the overall performance of the HRRP recognition method based on such a model is better than that of other methods. Therefore, parametric statistical modeling is currently the key research direction for radar HRRP recognition. This paper summarizes the radar HRRP target recognition methods of the last 15 years from the two aspects of shallow statistical modeling and deep statistical modeling, analyzes the characteristics and problems of these methods, and forecasts the development direction of radar target recognition based on HRRP parametric statistical modeling.

Keywords