Electronic Journal of Differential Equations (Feb 2015)
Nonexistence of soliton-like solutions for defocusing generalized KdV equations
Abstract
We consider the global dynamics of the defocusing generalized KdV equation $$ \partial_t u + \partial_x^3 u = \partial_x(|u|^{p-1}u). $$ We use Tao's theorem [5] that the energy moves faster than the mass to prove a moment type dispersion estimate. As an application of the dispersion estimate, we show that there is no soliton-like solutions with a certain decaying assumption.