Neurobiology of Disease (Sep 2023)

METTL14 regulates microglia/macrophage polarization and NLRP3 inflammasome activation after ischemic stroke by the KAT3B-STING axis

  • Yamei Li,
  • Jiacen Li,
  • Qian Yu,
  • Ling Ji,
  • Bo Peng

Journal volume & issue
Vol. 185
p. 106253

Abstract

Read online

N6-methyladenosine (m6A) plays a crucial role in ischemic stroke, whereas the role of methyltransferase-like 14 (METTL14) in ischemic stroke remains unknown. A model of middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation/reperfusion (OGD/R) model in HAPI cells were used to simulate ischemic stroke in vivo and in vitro. We found that METTL14 level was upregulated in microglia/macrophage after MCAO and OGD/R. METTL14 enhanced the expression of KAT3B by promoting the m6A modification of KAT3B mRNA. STING has been identified as a target for KAT3B and KAT3B increased STING expression by enhancing H3K27ac in the STING promoter. METTL14 promoted M1 polarization and NLRP3 inflammasome/pyroptosis axis by the KAT3B-STING signaling after OGD/R. METTL14 depletion relieved brain injury by inhibiting M1-like microglia/macrophage polarization and NLRP3 inflammasome/pyroptosis axis in MCAO rats. These findings indicate that METTL14 depletion relieves MCAO-induced brain injury, probably via switching microglia/macrophage from M1 towards M2 and restraining NLRP3 inflammasome/pyroptosis axis in microglia/macrophage.

Keywords