Discover Oncology (Aug 2024)
LncRNA MALAT-1 modulates EGFR-TKI resistance in lung adenocarcinoma cells by downregulating miR-125
Abstract
Abstract Molecular targeted therapy resistance remains a major challenge in treating lung adenocarcinoma (LUAD). The resistance of Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs, epidermal growth factor receptor-tyrosine kinase inhibitor) plays a dominant role in molecular targeted therapy. Our previous research demonstrated the role of MALAT-1 (Metastasis-associated lung adenocarcinoma transcript 1) in the formation of Erlotinib-resistant LUAD cells. This study aims to uncover the mechanism of MALAT-1 overexpression in Erlotinib-resistant LUAD cells. The RT2 LncRNA PCR array system was used to explore MALAT-1 regulation in Erlotinib-resistant LUAD cells through patient serum analysis. Dual luciferase reporter experiments confirmed the binding between MALAT-1 and miR-125, leading to regulation of miR-125 expression. Functional assays were performed to elucidate the impact of MALAT1 on modulating drug resistance, growth, and Epithelial-mesenchymal transition (EMT, Epithelial-mesenchymal transition) in both parental and Erlotinib-resistant LUAD cells. The investigation unveiled the mechanism underlying the competing endogenous RNA (ceRNA, competing endogenouse RNA) pathway. MALAT1 exerted its regulatory effect on miR-125 as a competing endogenous RNA (ceRNA). Moreover, MALAT1 played a role in modulating the sensitivity of LUAD cells to Erlotinib. Rab25 was identified as the direct target of miR-125 and mediated the functional effects of MALAT1 in Erlotinib-resistant LUAD cells. In conclusion, our study reveals overexpress MALAT-1 cause the drug resistance of EGFR-TKIs in non-small cell lung cancer (NSCLC) through the MALAT-1/miR-125/Rab25 axis. These findings present a potential novel therapeutic target and perspective for the treatment of LUAD.
Keywords