IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2023)
Personalized Functional Connectivity Based Spatio-Temporal Aggregated Attention Network for MCI Identification
Abstract
Functional connectivity (FC) networks deri- ved from resting-state magnetic resonance image (rs-fMRI) are effective biomarkers for identifying mild cognitive impairment (MCI) patients. However, most FC identification methods simply extract features from group-averaged brain templates, and neglect inter-subject functional variations. Furthermore, the existing methods generally concentrate on spatial correlation among brain regions, resulting in the inefficient capture of the fMRI temporal features. To address these limitations, we propose a novel personalized functional connectivity based dual-branch graph neural network with spatio-temporal aggregated attention (PFC-DBGNN-STAA) for MCI identification. Specifically, a personalized functional connectivity (PFC) template is firstly constructed to align 213 functional regions across samples and generate discriminative individualized FC features. Secondly, a dual-branch graph neural network (DBGNN) is conducted by aggregating features from the individual- and group-level templates with the cross-template FC, which is beneficial to improve the feature discrimination by considering dependency between templates. Finally, a spatio-temporal aggregated attention (STAA) module is investigated to capture the spatial and dynamic relationships between functional regions, which solves the limitation of insufficient temporal information utilization. We evaluate our proposed method on 442 samples from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and achieve the accuracies of 90.1%, 90.3%, 83.3% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification tasks, respectively, indicating that our method boosts MCI identification performance and outperforms state-of-the-art methods.
Keywords