Life (Jan 2022)

Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method

  • Shijian Ding,
  • Deling Wang,
  • Xianchao Zhou,
  • Lei Chen,
  • Kaiyan Feng,
  • Xianling Xu,
  • Tao Huang,
  • Zhandong Li,
  • Yudong Cai

DOI
https://doi.org/10.3390/life12020228
Journal volume & issue
Vol. 12, no. 2
p. 228

Abstract

Read online

The heart is an essential organ in the human body. It contains various types of cells, such as cardiomyocytes, mesothelial cells, endothelial cells, and fibroblasts. The interactions between these cells determine the vital functions of the heart. Therefore, identifying the different cell types and revealing the expression rules in these cell types are crucial. In this study, multiple machine learning methods were used to analyze the heart single-cell profiles with 11 different heart cell types. The single-cell profiles were first analyzed via light gradient boosting machine method to evaluate the importance of gene features on the profiling dataset, and a ranking feature list was produced. This feature list was then brought into the incremental feature selection method to identify the best features and build the optimal classifiers. The results suggested that the best decision tree (DT) and random forest classification models achieved the highest weighted F1 scores of 0.957 and 0.981, respectively. The selected features, such as NPPA, LAMA2, DLC1, and the classification rules extracted from the optimal DT classifier played a crucial role in cardiac structure and function in recent research and enrichment analysis. In particular, some lncRNAs (LINC02019, NEAT1) were found to be quite important for the recognition of different cardiac cell types. In summary, these findings provide a solid academic foundation for the development of molecular diagnostics and biomarker discovery for cardiac diseases.

Keywords