International Journal of Molecular Sciences (Apr 2021)

Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis

  • Helena Kratochvílová,
  • Miloš Mráz,
  • Barbora J. Kasperová,
  • Daniel Hlaváček,
  • Jakub Mahrík,
  • Ivana Laňková,
  • Anna Cinkajzlová,
  • Zdeněk Matloch,
  • Zdeňka Lacinová,
  • Jaroslava Trnovská,
  • Peter Ivák,
  • Peter Novodvorský,
  • Ivan Netuka,
  • Martin Haluzík

DOI
https://doi.org/10.3390/ijms22094538
Journal volume & issue
Vol. 22, no. 9
p. 4538

Abstract

Read online

The aim of our study was to analyze mitochondrial and endoplasmic reticulum (ER) gene expression profiles in subcutaneous (SAT) and epicardial (EAT) adipose tissue, skeletal muscle, and myocardium in patients with and without CAD undergoing elective cardiac surgery. Thirty-eight patients, 27 with (CAD group) and 11 without CAD (noCAD group), undergoing coronary artery bypass grafting and/or valvular surgery were included in the study. EAT, SAT, intercostal skeletal muscle, and right atrium tissue and blood samples were collected at the start and end of surgery; mRNA expression of selected mitochondrial and ER stress genes was assessed using qRT-PCR. The presence of CAD was associated with decreased mRNA expression of most of the investigated mitochondrial respiratory chain genes in EAT, while no such changes were seen in SAT or other tissues. In contrast, the expression of ER stress genes did not differ between the CAD and noCAD groups in almost any tissue. Cardiac surgery further augmented mitochondrial dysfunction in EAT. In our study, CAD was associated with decreased expression of mitochondrial, but not endoplasmic reticulum stress genes in EAT. These changes may contribute to the acceleration of coronary atherosclerosis.

Keywords