Energies (Dec 2020)
Thermodynamic Analysis of the Dryout Limit of Oscillating Heat Pipes
Abstract
The operating limits of oscillating heat pipes (OHP) are crucial for the optimal design of cooling systems. In particular, the dryout limit is a key factor in optimizing the functionality of an OHP. As shown in previous studies, experimental approaches to determine the dryout limit lead to contradictory results. This work proposes a compact theory to predict a dryout threshold that unifies the experimental and analytical data. The theory is based on the influence of vapor quality on the flow pattern. When the vapor quality exceeds a certain limit (x = 0.006), the flow pattern changes from slug flow to annular flow and the heat transfer decreases abruptly. The results indicate a uniform threshold value, which has been validated experimentally and by the literature. With that approach, it becomes possible to design an OHP with an optimized filling ratio and, hence, substantially improve its cooling abilities.
Keywords