Next Nanotechnology (Jan 2024)

Polarization effect induced by strain in hexagonal boron nitride nanoribbons

  • Ningqiang Shi,
  • Ling Li,
  • Junsong Wang,
  • Xiangqian Jiang,
  • Jiandong Hao,
  • Jinchang Meng,
  • Tingwei Yan,
  • Chuncheng Ban

Journal volume & issue
Vol. 5
p. 100047

Abstract

Read online

As a member of the hexagonal boron nitride (h-BN) system, boron nitride nanoribbons (BNNRs) have a BN polar covalent bonding infrastructure, and there are small-scale effects with strong correlation with piezoelectric effects as well as edge-strengthening quantum effects. However, realizing the polarization effect on BNNRs through experiments remains challenging. Here, we verify the strain-induced polarization effect on BNNRs through computational simulations and experiments. Using the ten-point iterative method, a computational model that can be used for the discrete difference of the polarization charge density and energy density of BNNRs is developed, and the correctness of the model for the polarization effect of Gaussian strain-induced BNNRs is verified by the computational programming in Python language. The polarization effects of strain-induced zigzag-edge BNNRs (ZBNNRs) for sawtooth strain, parabolic strain and oblique sawtooth strain are also investigated separately. In addition, the results of the computational simulations are experimentally verified to be consistent with the theoretical calculations. And the piezoelectric constant of − 276.88 pm∙V−1 for strained ZBNNRs is found to be four times higher than that of unstrained ZBNNRs. This study provides a relevant reference for the study of realizing the high integration of nano-scale h-BN based piezoelectricity for piezoelectricity.

Keywords