BioResources (Feb 2024)

Preparation of Antibacterial and Strong Regenerated Cellulose Film via Crosslinking with Polymeric Quaternary Ammonium Salt Containing Epoxy/ZnO

  • Meng Zhang,
  • Xiaoning Tang,
  • Tian Si,
  • Xueping Wang,
  • Xue Wu

Journal volume & issue
Vol. 19, no. 2
pp. 2149 – 2159

Abstract

Read online

Particulate matter (PM), usually formed as aerosols suspended in atmosphere, is becoming a carrier of viruses and bacteria, accelerating the spread of respiratory diseases. Hence, air filtration devices are widely utilized for removing PM. In this study, a regenerated cellulose (RC) film was prepared with the properties of good mechanical strength, antibacterial, and highly efficient filtration (EF) properties, through cellulose dissolution and further crosslinking with P(AGE-DMDAAC)/ZnO. Results exhibited that the Young's modulus of the composite membrane was nearly 4.3 GPa. Additionally, the antibacterial performance against Escherichia coli and Staphylococcus aureus, was up to 99.89% and 99.67%, respectively. Meanwhile, RC composite filter exhibited a high PM 2.5 capture efficiency (over 99.91%). This study introduces an interesting approach to produce antibacterial films with the characteristics of notably good mechanical performance and high fine particle EF that can be utilized in a high humidity environment.

Keywords