IEEE Open Journal of Engineering in Medicine and Biology (Jan 2024)

FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery

  • Mahmood Alzubaidi,
  • Uzair Shah,
  • Marco Agus,
  • Mowafa Househ

DOI
https://doi.org/10.1109/OJEMB.2024.3382487
Journal volume & issue
Vol. 5
pp. 281 – 295

Abstract

Read online

Goal: FetSAM represents a cutting-edge deep learning model aimed at revolutionizing fetal head ultrasound segmentation, thereby elevating prenatal diagnostic precision. Methods: Utilizing a comprehensive dataset–the largest to date for fetal head metrics–FetSAM incorporates prompt-based learning. It distinguishes itself with a dual loss mechanism, combining Weighted DiceLoss and Weighted Lovasz Loss, optimized through AdamW and underscored by class weight adjustments for better segmentation balance. Performance benchmarks against prominent models such as U-Net, DeepLabV3, and Segformer highlight its efficacy. Results: FetSAM delivers unparalleled segmentation accuracy, demonstrated by a DSC of 0.90117, HD of 1.86484, and ASD of 0.46645. Conclusion: FetSAM sets a new benchmark in AI-enhanced prenatal ultrasound analysis, providing a robust, precise tool for clinical applications and pushing the envelope of prenatal care with its groundbreaking dataset and segmentation capabilities.

Keywords