Scientific Reports (Jul 2017)

Achieving low-emissivity materials with high transmission for broadband radio-frequency signals

  • Liu Liu,
  • Huiting Chang,
  • Tao Xu,
  • Yanan Song,
  • Chi Zhang,
  • Zhi Hong Hang,
  • Xinhua Hu

DOI
https://doi.org/10.1038/s41598-017-04988-9
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 7

Abstract

Read online

Abstract The use of low-emissivity (low-e) materials in modern buildings is an extremely efficient way to save energy. However, such materials are coated by metallic films, which can strongly block radio-frequency signals and prevent indoor-outdoor wireless communication. Here, we demonstrate that, when specially-designed metallic metasurfaces are covered on them, the low-e materials can remain low emissivity for thermal radiation and allow very high transmission for a broad band of radio-frequency signals. It is found that the application of air-connected metasurfaces with subwavelength periods is critical to the observed high transmission. Such effects disappear if periods are comparable to wavelengths or metal-connected structures are utilized. The conclusion is supported by both simulations and experiments. Advantages such as easy to process, low cost, large-area fabrication and design versatility of the metasurface make it a promising candidate to solve the indoor outdoor communication problem.