Heliyon (Dec 2024)
Estimation of GHGs emission from traditional kilns charcoal production in northwestern Ethiopia: Implications on climate change
Abstract
Rural areas in Ethiopia serve as the primary source of charcoal for urban populations, mainly produced using traditional kilns. However, this traditional method significantly contributes to greenhouse gas (GHG) emissions, exacerbating climate change and deforestation. While banning charcoal production is not currently feasible in Ethiopia because of the lack of affordable alternative energy sources (fuel), improving the efficiency of the traditional production system can mitigate the climate impact caused by charcoal production. This study assessed GHG emissions from traditional charcoal production in Awi zone, northwestern Ethiopia, using primary data from 18 sample kilns and secondary data from literature values. Employing a carbon balance approach, we estimated that, on average, 63 % of the original wood carbon was lost as gaseous products, resulting in 1671 g of carbon released per kg of charcoal produced in Awi zone. Our results also indicate that the average primary global warming impact (PGWI) for the 18 sample kilns was found to be 7.6 kg CO2-eq per kg of charcoal produced. Within this, the less efficient kiln production system, constituting 6 out of the sample, contributed 1.5 times more to global warming (9.43 kg CO2-eq per kg of charcoal produced) compared to the more efficient kiln system (6.25 kg CO2-eq per kg of charcoal produced for the same number of kilns). The policy implication of our finding is that any interventions aiming at mitigating climate change through reduction of GHG emissions from charcoal production must focus on improving the conversion efficiency of the traditional kiln currently used in addition to promoting the use of sustainably harvested wood.
Keywords