Journal of High Energy Physics (Aug 2020)
An approach to BPS black hole microstate counting in an N = 2 STU model
Abstract
Abstract We consider four-dimensional dyonic single-center BPS black holes in the N = 2 STU model of Sen and Vafa. By working in a region of moduli space where the real part of two of the three complex scalars S, T , U are taken to be large, we evaluate the quantum entropy function for these BPS black holes. In this regime, the subleading corrections point to a microstate counting formula partly based on a Siegel modular form of weight two. This is supplemented by another modular object that takes into account the dependence on Y 0, a complex scalar field belonging to one of the four off-shell vector multiplets of the underlying supergravity theory. We also observe interesting connections to the rational Calogero model and to formal deformation of a Poisson algebra, and suggest a string web picture of our counting proposal.
Keywords