Heliyon (Aug 2023)

Nanowarming improves survival of vitrified ovarian tissue and follicular development in a sheep model

  • Sareh Karimi,
  • Seyed Nasrollah Tabatabaei,
  • Marefat Ghaffari Novin,
  • Mahsa Kazemi,
  • Zahra Shams Mofarahe,
  • Alireza Ebrahimzadeh-Bideskan

Journal volume & issue
Vol. 9, no. 8
p. e18828

Abstract

Read online

Tissue cryopreservation has allowed long term banking of biomaterials in medicine. Ovarian tissue cryopreservation in particular helps patients by extending their fertility window. However, protection against tissue injury during the thawing process has proven to be challenging. This is mainly due to the heterogenous and slow distribution of the thermal energy across the vitrified tissue during a conventional warming process. Nanowarming is a technique that utilizes hyperthermia of magnetic nanoparticles to accelerate this process. Herein, hyperthermia of synthesized PEGylated silica-coated iron oxide nanoparticles was used to deter the injury of cryopreserved ovarian tissue in a sheep model. When compared to the conventional technique, our findings suggest that follicular development and gene expression in tissues warmed by the proposed technique have been improved. In addition, Nanowarming prevented cellular apoptosis and oxidative stress. We therefore conclude that Nanowarming is a potential complementary candidate to increase efficiency in the ovarian cryopreservation field.

Keywords