مجله آب و خاک (Dec 2022)
Evaluation of WetSpass-M Model for Estimation of Hydrological Response of Neyshabur-Rookh Watershed to Climate Change of Future Years
Abstract
Introduction The sustainable availability of water resources and the qualitative and quantitative status of these resources are threatened by many natural and antropogenic factors, among which climate change plays an important role. Climate change can have profound effects on the hydrological cycle through changes in the amount and intensity of precipitation, evapotranspiration, soil moisture, and increasing temperature. On the other hand, the distribution of rainfall in different parts of the world will be uneven. So that some parts of the world may face a significant decrease in the amount and intensity of precipitation, as well as major changes in the timing of wet and dry seasons. Therefore, sufficient knowledge about the effects of climate change on hydrological processes and water resources will be of particular importance. In this research, as the first comprehensive study, the effect of future climate change on the water resources components of Neyshabur-Rookh watershed was investigated by a set of one hydrological model and six General Circulation Models under the RCP4.5 scenario. Materials and Methods The Neyshabur-Rookh watershed with an area of 9449 square kilometers is a sub-basin of Kavir-e Markazi-e Iran and a part of the Kalshoor Neyshabur watershed, which is located between of 58 degrees and 13 minutes and 59 degrees and 30 minutes and east longitude and 35 degrees and 40 minutes and 36 degrees and 39 minutes north latitude. The study area with an average altitude of 1549.6 m above sea level and average annual precipitation of 246.83 mm, a mean annual temperature of 13.3 Celsius has an arid to semi-arid climate. For hydrological simulation of the watershed using WetSpass-M model, maps of Digital Elevation Model (DEM), land-use, soil texture, slope, and distribution map of groundwater depth, Leaf Area Index (LAI), and climate data (rainfall, mean temperature, potential evapotranspiration, wind speed and the number of rainy days) per month in 1991-2017 period were used. Then the prepared model was calibrated and validated. The climatic data of six General Circulation Models (GCMs) under the RCP4.5 scenario (Representative Concentration Pathways) were downscaled using the Quantile Mapping Bias-Corrected method. The downscaled GCM models were ranked and weighted in each station according to results of the Leave one out cross validation method and utilized as an ensemble for projecting the near-future climatic conditions of the water resources components of the watershed. By importing the monthly maps of precipitation, average temperature and evapotranspiration in the period of 2026-2052 into the calibrated hydrological model, the hydrological response of watershed to near future climate change was determined and evaluated. Results and Discussion WetSpass-M was calibrated by changing the calibration parameters in five hydrometric stations and the compared measured and simulated streamflow. The values of four evaluation criteria NS, R2, MB, and RMSE indicated the good performance of the model during the calibration and validation process. By predicting climatic parameters in near future and preparing and importing maps of monthly precipitation, mean temperature, and evapotranspiration to WetSpass-M, the hydrologic simulation of the watershed was done in the 2026-2052 period. The results indicated that the mean annual temperature and precipitation would be respectively increased by 4.66% and 1.21°C under RCP4.5 in the near-future period compared to the baseline period. The average temperature will increase in all months so that the most changes will occur in September and the least changes will occur in March. The rainfall of the watershed will increase in March, April, May, October, and December and will decrease in the rest of the months. The highest and lowest rainfall changes will happen in April and August, respectively. The analysis of the components of water resources in the near future shows that annual total runoff, groundwater recharge, and actual evapotranspiration will increase by 5.9%, 14.85%, and 1.42% compared to the base period, and annual direct runoff and interception will decrease by 15.15% and 3.54%, respectively. Conclusion Considering the importance and major role of the Neyshabur watershed in the economy of agricultural products of Razavi Khorasan province, the results of this research will be of great help to the managers and policymakers of the country's water resources management in order to make appropriate decisions with the aim of reducing the effects of climate change on the water resources of the Neyshabur-Rookh Basin.
Keywords