Iranian Journal of Physics Research (May 2022)
Mobility and thermoelectric properties of semiconducting diamanes
Abstract
In this paper, mobility and thermoelectric properties of diamanes C2X (X = H, F, Cl) are studied using quantum espresso and Boltztrap computational package based on density functional theory. In all structures of C2X (X = H, F, Cl), the mobility of holes is smaller than the mobility of the electrons, which is due to the shape of the band structure of each structure. Maximum of Seebeck coefficient is 2733, 2811, 2201 µV/K for n-type C2H, C2Fand C2Cl and it is -2767, -2696 and -2269 µV/K for p-type C2H, C2Fand C2Cl, respectively. In all structures, thermoelectric parameters such as electrical conductivity, electrical thermal conductivity and power factor are maximum in positive values of chemical potential. As a result, these materials can be more suitable thermoelectric materials with n-type doping. Also, all three structures have a maximum power factor in the temperature range of 200-500 Kelvin.
Keywords