Foods (Jun 2024)

Single-Cell Protein and Ethanol Production of a Newly Isolated <i>Kluyveromyces marxianus</i> Strain through Cheese Whey Valorization

  • Danai Ioanna Koukoumaki,
  • Seraphim Papanikolaou,
  • Zacharias Ioannou,
  • Ioannis Mourtzinos,
  • Dimitris Sarris

DOI
https://doi.org/10.3390/foods13121892
Journal volume & issue
Vol. 13, no. 12
p. 1892

Abstract

Read online

The present work examined the production of single-cell protein (SCP) by a newly isolated strain of Kluyveromyces marxianus EXF-5288 under increased lactose concentration of deproteinized cheese whey (DCW) and different temperatures (in °C: 20.0, 25.0, 30.0 and 35.0). To the best of the authors’ knowledge, this is the first report examining the ability of Kluyveromyces marxianus species to produce SCP at T = 20.0 °C. Different culture temperatures led to significant differences in the strain’s growth, while maximum biomass and SCP production (14.24 ± 0.70 and 6.14 ± 0.66 g/L, respectively) were observed in the cultivation of K. marxianus strain EXF-5288 in shake-flask cultures at T = 20.0 °C. Increased DCW lactose concentrations (35.0–100.0 g/L) led to increased ethanol production (Ethmax = 35.5 ± 0.2 g/L), suggesting that K. marxianus strain EXF-5288 is “Crabtree-positive”. Batch-bioreactor trials shifted the strain’s metabolism to alcoholic fermentation, favoring ethanol production. Surprisingly, K. marxianus strain EXF-5288 was able to catabolize the produced ethanol under limited carbon presence in the medium. The dominant amino acids in SCP were glutamate (15.5 mg/g), aspartic acid (12.0 mg/g) and valine (9.5 mg/g), representing a balanced nutritional profile

Keywords