Engineering Science and Technology, an International Journal (Mar 2016)

A theoretical and experimental study on geometric nonlinearity of initially curved cantilever beams

  • Sushanta Ghuku,
  • Kashi Nath Saha

DOI
https://doi.org/10.1016/j.jestch.2015.07.006
Journal volume & issue
Vol. 19, no. 1
pp. 135 – 146

Abstract

Read online

This paper presents a theoretical and experimental study on large deflection behavior of initially curved cantilever beams subjected to various types of loadings. The physical system as a straight cantilever beam subjected to a tip concentrated load is considered in this study. Nonlinear differential equations are obtained for large deflection analysis of such a straight cantilever beam, and this problem is known to involve geometrical nonlinearity. The equations are solved numerically with the help of MATLAB® computational platform to get deflection profiles of the concerned problem. These results are imposed subsequently on the center line of an initially curved beam to get theoretical load-deflection behavior of curved beam problems. To verify the theoretical model, experiment is carried out with the master leaf of a leaf spring bundle by modeling it as an initially curved cantilever beam. The effects of initial clamping and geometry variations in the eye-region are observed from experimental investigation which is commonly neglected in the mathematical formulation. Comparisons of the theoretical results with the experimental results are quite good, but the avenues for further improvement are also reported. The proposed approach is further extended to study large deflection behavior of an initially curved cantilever beam subjected to distributed and combined load. These results are successfully validated with existing results for straight beams and some new results are furnished for initially curved cantilever beams.

Keywords