Revista Politécnica (Apr 2020)
Intelligent Swing-Up and Robust Stabilization via Tube-based Nonlinear Model Predictive Control for A Rotational Inverted-Pendulum System
Abstract
The purpose of this paper is to introduce a new robust nonlinear model-based predictive control scheme applied to a rotational inverted-pendulum system. The rotational pendulum is composed by a mechanical arm attached to a free-motion pendulum (orthogonal to the arm), namely Furuta Pendulum. In principle, a Fuzzy controller enables the robotic arm bar to lift the rotational pendulum through oscillatory swing-up motion up to automatically achieve the upper equilibrium position in a prescribed stabilizing operation range. After the pendulum reaches the operating range, an intelligent control bypass system allows the transition between the swing-up motion controller and a robust predictive controller to maintain the angular position of the pendulum around the upward critical position. To achieve robust performance, a centralized control framework combines a triplet of control actions. The first one compensates for disturbances using the regulation trajectory –feedforward control. The second control action corrects errors produced by modelling mismatch. The third controller assures robustness on the closed-loop system whilst compensating for deviations of the state trajectories from the nominal ones (i.e, disturbance-free). The control strategy provides robust feasibility despite constraints on the arm bar and pendulum's actuators are met. Such constraints are calculated on-line based on robust positively invariant sets characterised by polytopic sets (tubes). The proposed controller is tested in a series of simulations, and experimentally validated on a high-fidelity simulation environment including a rotational inverted-pendulum built for educational purposes. The results show that robust control performance is strengthened against disturbances of the closed-loop system benchmarked to inherently-robust linear and nonlinear predictive controllers.