E3S Web of Conferences (Jan 2023)

Numerical simulation of dust particle deposition and heat transfer in fin-plate radiators

  • Soloveva Olga,
  • Solovev Sergei,
  • Shakurova Rozalina,
  • Mustafaev Timur

DOI
https://doi.org/10.1051/e3sconf/202346008006
Journal volume & issue
Vol. 460
p. 08006

Abstract

Read online

Fin-plate radiators are actively used in cooling systems for microelectronic devices. Radiators often become dusty during operation, which leads to decrease in heat flow and heat dissipation. Consequently, the possibility of device overheating and failure increases. We carried out numerical studies to assess the influence of the radiator geometry on the deposition of dust particles and, as a consequence, the change in heat flow. We built 3D models of plate radiators with different types of fins (flat and corrugated) and the distance between them. The problem of air flow with dust particles flowing around the radiator has been solved. We revealed the dependences of the efficiency of particle deposition and changes in heat flow on the geometry of the radiator, the size of dust particles and the distance between the fins.