Mathematical Biosciences and Engineering (Feb 2022)

A hybrid-strategy-improved butterfly optimization algorithm applied to the node coverage problem of wireless sensor networks

  • Donghui Ma,
  • Qianqian Duan

DOI
https://doi.org/10.3934/mbe.2022181
Journal volume & issue
Vol. 19, no. 4
pp. 3928 – 3952

Abstract

Read online

To increase the node coverage of wireless sensor networks (WSN) more effectively, in this paper, we propose a hybrid-strategy-improved butterfly optimization algorithm (H-BOA). First, we introduce Kent chaotic map to initialize the population to ensure a more uniform search space. Second, a new inertial weight modified from the Sigmoid function is introduced to balance the global and local search capacities. Third, we comprehensively use elite-fusion and elite-oriented local mutation strategies to raise the population diversity. Then, we introduce a perturbation based on the standard normal distribution to reduce the possibility of the algorithm falling into premature. Finally, the simulated annealing process is introduced to evaluate the solution's quality and improve the algorithm's ability, which is helpful to jump out of the local optimal value. Through numerous experiments of the international benchmark functions, the results show the performance of H-BOA has been significantly raised. We apply it to the WSN nodes coverage problem. The results show that H-BOA improves the WSN maximum coverage and it is far more than other optimization algorithms.

Keywords