PeerJ (Sep 2021)
Evaluation of the molluscicidal activities of arylpyrrole on Oncomelania hupensis, the intermediate host of Schistosoma japonicum
Abstract
The snail Oncomelania hupensis is the only intermediate host of the highly invasive parasite Schistosoma japonicum. Molluscicide is often used to curb transmission of S. japonicum. Niclosamide, the only World Health Organization (WHO) recognized molluscicide, presents major drawbacks, including high cost and toxicity towards aquatic animals. In the present study, a number of aryl pyrrole derivatives (ADs) were synthesized to serve as potential molluscicides and were tested on O. hupensis. To uncover the underlying mechanisms, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) levels were assessed in the soft body of ADs-exposed O. hupensis, using high performance liquid chromatography (HPLC). The effect of C6 on key points of energy metabolism (the activities of complexes I, III, IV and the membrane potential) was determined. We demonstrated that the Compound 6 (C6, 4-bromo-1-(bromomethyl)-2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile) exerted the strongest molluscicidal activity against adult O. hupensis at LC50 of 0.27, 0.19, and 0.13 mg/L for 24, 48, and 72 h respectively. Moreover, we found that the bromide on the pyrrole ring of C6 was essential for molluscicidal activity. Furthermore, the ATP content reduced from 194.46 to 139.75 μg/g after exposure to 1/2 LC50, and reduced to 93.06 μg/g after exposure to LC50. ADP, on the other hand, remained the same level before and after C6 exposure. We found that C6, at 1/2 LC50, reduced the membrane potential of O. hupensis, while no significant changes were observed in the activities of complexes I, III, and IV. C6 was identified with excellent activities on O. hupensis. The obtained structure−activity relationship and action mechanism study results should be useful for further compound design and development.
Keywords