PLoS ONE (Jan 2022)

Sonodynamic therapy suppresses matrix collagen degradation in vulnerable atherosclerotic plaque by modulating caspase 3 - PEDF/HIF-1α - MMP-2/MMP-9 signaling in macrophages.

  • Yanfeng Tian,
  • Siqi Sheng,
  • Weiwei Gao,
  • Jianting Yao,
  • Ye Tian

DOI
https://doi.org/10.1371/journal.pone.0279191
Journal volume & issue
Vol. 17, no. 12
p. e0279191

Abstract

Read online

BackgroundThe rupture of vulnerable atherosclerotic plaque is the main cause of acute ischemic vascular events, and is characterized by pathological degradation of matrix collagen in the fibrous cap. In a previous study, we reported that 5-aminolevulinic acid-mediated sonodynamic therapy suppressed collagen degradation in rabbit plaque. However, the underlying molecular mechanism has yet to be fully elucidated.MethodsWe applied sinoporphyrin sodium-mediated sonodynamic therapy (DVDMS-SDT) to balloon-denuded rabbit and apolipoprotein E-deficient (ApoE-/-) mouse models to observe collagen content in plaque. Cultured human THP-1 and mouse peritoneal macrophage-derived foam cells were used for in vitro mechanistic studies.ResultsWe observed that DVDMS-SDT decreased plaque area and increased the percentages of collagen and smooth muscle cells and reduced the percentage of macrophages in rabbit and ApoE-/- mouse advanced plaques. In vitro, DVDMS-SDT modulated the caspase 3-pigment epithelium-derived factor/hypoxia-inducible factor-1α (PEDF/HIF-1α)-matrix metalloprotease-2/9 (MMP-2/MMP-9) signaling in macrophage foam cells.ConclusionsOur findings show that DVDMS-SDT effectively inhibits matrix collagen degradation in advanced atherosclerotic plaque by modulating caspase 3-PEDF/HIF-1α-MMP-2/MMP-9 signaling in macrophage foam cells and therefore represents a suitable and promising clinical regimen to stabilize vulnerable plaques.