Simultaneous Estimation of Vehicle Sideslip and Roll Angles Using an Event-Triggered-Based IoT Architecture
Fernando Viadero-Monasterio,
Javier García,
Miguel Meléndez-Useros,
Manuel Jiménez-Salas,
Beatriz López Boada,
María Jesús López Boada
Affiliations
Fernando Viadero-Monasterio
Mechanical Engineering Department, Advanced Vehicle Dynamics and Mechatronic Systems (VEDYMEC), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
Javier García
Computer Science and Software Engineering Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
Miguel Meléndez-Useros
Mechanical Engineering Department, Advanced Vehicle Dynamics and Mechatronic Systems (VEDYMEC), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
Manuel Jiménez-Salas
Mechanical Engineering Department, Advanced Vehicle Dynamics and Mechatronic Systems (VEDYMEC), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
Beatriz López Boada
Mechanical Engineering Department, Advanced Vehicle Dynamics and Mechatronic Systems (VEDYMEC), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
María Jesús López Boada
Mechanical Engineering Department, Advanced Vehicle Dynamics and Mechatronic Systems (VEDYMEC), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
In recent years, there has been a significant integration of advanced technology into the automotive industry, aimed primarily at enhancing safety and ride comfort. While a notable proportion of these driver-assist systems focuses on skid prevention, insufficient attention has been paid to addressing other crucial scenarios, such as rollovers. The accurate estimation of slip and roll angles plays a vital role in ensuring vehicle control and safety, making these parameters essential, especially with the rise of modern technologies that incorporate networked communication and distributed computing. Furthermore, there exists a lag in the transmission of information between the various vehicle systems, including sensors, actuators, and controllers. This paper outlines the design of an IoT architecture that accurately estimates the sideslip angle and roll angle of a vehicle, while addressing network transmission delays with a networked control system and an event-triggered communication scheme. Experimental results are presented to validate the performance of the IoT architecture proposed. The event-triggered scheme of the IoT solution is used to decrease data transmission and prevent network overload.