Atmospheric Chemistry and Physics (Jan 2004)
Gas-particle interactions above a Dutch heathland: III. Modelling the influence of the NH<sub>3</sub>-HNO<sub>3</sub>-NH<sub>4</sub>NO<sub>3</sub> equilibrium on size-segregated particle fluxes
Abstract
Micrometeorological measurements of size-segregated particle number fluxes above Dutch heathlands and forests have repeatedly shown simultaneous apparent emission of particles with a diameter (Dp)3), nitric acid (HNO3) and ammonium (NH4+), a new numerical model is developed to predict the vertical concentration and flux profiles of the different species as modified by the interaction of equilibration and surface/atmosphere exchange processes. In addition to former studies, the new approach explicitly models the height-dependence of the NH4+ and total aerosol size-distribution. Using this model, it is demonstrated that both gas-to-particle conversion (gtpc) and aerosol evaporation can significantly alter the apparent surface exchange fluxes, and evoke the observed bi-directional particle fluxes under certain conditions. Thus, in general, the NH3-HNO3-NH4NO3 equilibrium needs to be considered when interpreting eddy-covariance particle fluxes. Applied to an extensive dataset of simultaneous flux measurements of particles and gases at Elspeet, NL, the model reproduces the diurnal pattern of the bi-directional exchange well. In agreement with the observation of fast NH4+ deposition, slow nitric acid deposition (both as measured by the aerodynamic gradient method) and small concentration products of NH3×HNO3 at this site, this study suggests that NH4+ evaporation at this site significantly alters surface exchange fluxes.