Journal of Lipid Research (Nov 2011)

Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters

  • Jose Castro-Perez,
  • François Briand,
  • Karen Gagen,
  • Sheng-Ping Wang,
  • Ying Chen,
  • David G. McLaren,
  • Vinit Shah,
  • Rob J. Vreeken,
  • Thomas Hankemeier,
  • Thierry Sulpice,
  • Thomas P. Roddy,
  • Brian K. Hubbard,
  • Douglas G. Johns

Journal volume & issue
Vol. 52, no. 11
pp. 1965 – 1973

Abstract

Read online

Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol (HDL-C) and lowers LDL cholesterol in dyslipidemic patients; however, the effects of ANA on cholesterol/lipoprotein metabolism in a dyslipidemic hamster model have not been demonstrated. To test whether ANA (60mg/kg/day, 2 weeks) promoted reverse cholesterol transport (RCT), 3H-cholesterol-loaded macrophages were injected and 3H-tracer levels were measured in HDL, liver, and feces. Compared to controls, ANA inhibited CETP (94%) and increased HDL-C (47%). 3H-tracer in HDL increased by 69% in hamsters treated with ANA, suggesting increased cholesterol efflux from macrophages to HDL. 3H-tracer in fecal cholesterol and bile acids increased by 90% and 57%, respectively, indicating increased macrophage-to-feces RCT. Mass spectrometry analysis of HDL from ANA-treated hamsters revealed an increase in free unlabeled cholesterol and CE. Furthermore, bulk cholesterol and cholic acid were increased in feces from ANA-treated hamsters. Using two independent approaches to assess cholesterol metabolism, the current study demonstrates that CETP inhibition with ANA promotes macrophage-to-feces RCT and results in increased fecal cholesterol/bile acid excretion, further supporting its development as a novel lipid therapy for the treatment of dyslipidemia and atherosclerotic vascular disease.

Keywords