Discussiones Mathematicae Graph Theory (May 2019)

1-Restricted Optimal Rubbling on Graphs

  • Beeler Robert A.,
  • Haynes Teresa W.,
  • Murphy Kyle

DOI
https://doi.org/10.7151/dmgt.2102
Journal volume & issue
Vol. 39, no. 2
pp. 575 – 588

Abstract

Read online

Let G be a graph with vertex set V and a distribution of pebbles on the vertices of V. A pebbling move consists of removing two pebbles from a vertex and placing one pebble on a neighboring vertex, and a rubbling move consists of removing a pebble from each of two neighbors of a vertex v and placing a pebble on v. We seek an initial placement of a minimum total number of pebbles on the vertices in V, so that no vertex receives more than one pebble and for any given vertex v ∈ V, it is possible, by a sequence of pebbling and rubbling moves, to move at least one pebble to v. This minimum number of pebbles is the 1-restricted optimal rubbling number. We determine the 1-restricted optimal rubbling numbers for Cartesian products. We also present bounds on the 1-restricted optimal rubbling number.

Keywords