Genetics Research (Jan 2024)

Comprehensive Analysis of the Mechanism of Anoikis in Hepatocellular Carcinoma

  • Dongqian Li,
  • Qian Bao,
  • Shiqi Ren,
  • Haoxiang Ding,
  • Chengfeng Guo,
  • Kai Gao,
  • Jian Wan,
  • Yao Wang,
  • MingYan Zhu,
  • Yicheng Xiong

DOI
https://doi.org/10.1155/2024/8217215
Journal volume & issue
Vol. 2024

Abstract

Read online

Background. Hepatocellular carcinoma (HCC), ranking as the second-leading cause of global mortality among malignancies, poses a substantial burden on public health worldwide. Anoikis, a type of programmed cell death, serves as a barrier against the dissemination of cancer cells to distant organs, thereby constraining the progression of cancer. Nevertheless, the mechanism of genes related to anoikis in HCC is yet to be elucidated. Methods. This paper’s data (TCGA-HCC) were retrieved from the database of the Cancer Genome Atlas (TCGA). Differential gene expression with prognostic implications for anoikis was identified by performing both the univariate Cox and differential expression analyses. Through unsupervised cluster analysis, we clustered the samples according to these DEGs. By employing the least absolute shrinkage and selection operator Cox regression analysis (CRA), a clinical predictive gene signature was generated from the DEGs. The Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to determine the proportions of immune cell types. The external validation data (GSE76427) were procured from Gene Expression Omnibus (GEO) to verify the performance of the clinical prognosis gene signature. Western blotting and immunohistochemistry (IHC) analysis confirmed the expression of risk genes. Results. In total, 23 prognostic DEGs were identified. Based on these 23 DEGs, the samples were categorized into four distinct subgroups (clusters 1, 2, 3, and 4). In addition, a clinical predictive gene signature was constructed utilizing ETV4, PBK, and SLC2A1. The gene signature efficiently distinguished individuals into two risk groups, specifically low and high, demonstrating markedly higher survival rates in the former group. Significant correlations were observed between the expression of these risk genes and a variety of immune cells. Moreover, the outcomes from the validation cohort analysis aligned consistently with those obtained from the training cohort analysis. The results of Western blotting and IHC showed that ETV4, PBK, and SLC2A1 were upregulated in HCC samples. Conclusion. The outcomes of this paper underscore the effectiveness of the clinical prognostic gene signature, established utilizing anoikis-related genes, in accurately stratifying patients. This signature holds promise in advancing the development of personalized therapy for HCC.