Journal of Biomedical Physics and Engineering (Jun 2022)

Dosimetric Evaluation of the Treatment Plan on Indigenous Heterogeneous Phantoms using Analytical Anisotropic Algorithm and Acuros-XB Algorithm for Different Photon Energies

  • Vinod Kumar Gangwar,
  • Om Prakash Gurjar,
  • Lalit Kumar,
  • Avinash Agarwal,
  • Vineet Kumar Mishra,
  • Surendra Prasad Mishra,
  • Saket Pandey

DOI
https://doi.org/10.31661/jbpe.v0i0.2012-1246
Journal volume & issue
Vol. 12, no. 3
pp. 237 – 244

Abstract

Read online

Background: Modern radiotherapy techniques are using advanced algorithms; however, phantoms used for quality assurance have homogeneous density; accordingly, the development of heterogeneous phantom mimicking human body sites is imperative to examine variation between planned and delivered doses. Objective: This study aimed to analyze the accuracy of planned dose by different algorithms using indigenously developed heterogeneous thoracic phantom (HT). Material and Methods: In this experimental study, computed tomography (CT) of HT was done, and the density of different parts was measured. The plan was generated on CT images of HCP with 6 and 15 Megavoltage (MV) photon beams using different treatment techniques, including three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Plans were delivered by the linear accelerator, and the dose was measured using the ion chamber (IC) placed in HT; planned and measured doses were compared. Results: Density patterns for different parts of the fabricated phantom, including rib, spine, scapula, lung, chest wall, and heart were 1.849, 1.976, 1.983, 0.173, 0.855, and 0.833 g/cc, respectively. Variation between planned and IC estimated doses with the tolerance (±5%) for all photon energies using different techniques. Acuros-XB (AXB) showed a slightly higher variation between computed and IC estimated doses using HCP compared to the analytical anisotropic algorithm (AAA). Conclusion: The indigenous heterogeneous phantom can accurately simulate the dosimetric scenario for different algorithms (AXB or AAA) and be also utilized for routine patient-specific QA.

Keywords