Oil & Gas Science and Technology (Jan 2016)
New Fuzzy Model for Risk Assessment Based on Different Types of Consequences
Abstract
A new risk assessment methodology by using fuzzy logic is proposed in this paper. The new Fuzzy Inference System (FIS) was established by the Mamdani algorithm based on different consequences of an incident. A combination of two FIS formed the proposed fuzzy method. Human knowledge and brainstorming were the devices for making the rules and interdependencies between variables in the new model. Different types of consequences and effective parameters were considered as inputs for the first fuzzy inference system. The final consequence was the preliminary result of the first inference model. It added to the probability of failures, as inputs of the second inference model. The result of the second inference model was the risk factor, which was considered as the final output of the proposed new fuzzy model. This model makes risk assessment more convenient in the absence of suitable data. In addition, decision-making will be easier, since its results are more understandable than the results of classical methods. A case study and a comparison between the classic method and the new fuzzy model illustrated that the results of the proposed model are more accurate, reliable and convenient for use in decision-making.