Earth and Space Science (Jul 2024)

Quantifying Downward Radiative Fluxes From Nighttime Martian Water Ice Clouds: Applications to Thermal Modeling of Surface Temperatures

  • C. E. Gary‐Bicas,
  • A. D. Rogers,
  • S. Piqueux

DOI
https://doi.org/10.1029/2024EA003560
Journal volume & issue
Vol. 11, no. 7
pp. n/a – n/a

Abstract

Read online

Abstract During the first part of the Martian year (Ls = 50°–160°) a phenomenon occurs on Mars in the tropical and equatorial regions (30°N–10°S) known as the Aphelion Cloud Belt (ACB). During this time, there is prominent formation and diurnal variability of water ice clouds. Limited empirical attempts have been made to characterize the magnitude of radiative flux contributions from clouds to nighttime surface temperatures. In this work, we estimated the infrared (IR) flux contribution at ground level from the clouds by comparing surface temperature data from the Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor (MGS) to calculated temperatures using the KRC numerical thermal model. We then generated a database of IR fluxes at the ground contributed by clouds spanning the entirety of the tropical and equatorial regions as a function of Solar Longitude (Ls) on Mars in one degree bins. We compared results with work presented elsewhere in the literature and found good agreement. We also found that temporal trends followed the general established range for the ACB but our analysis demonstrated the peak ACB values occurred at later times (Ls = 100°–140°) than previously published data sets using water ice opacity retrievals (Ls = 90°–110°). This database may be used in comparison to calculated Global Climate Model fluxes as well as a lookup tool for more precise estimation of surface and subsurface thermal environments in these regions.

Keywords