Atmosphere (Feb 2023)

Assessment of Climate Indices over the Carpathian Basin Based on ALADIN5.2 and REMO2015 Regional Climate Model Simulations

  • Otília A. Megyeri-Korotaj,
  • Beatrix Bán,
  • Réka Suga,
  • Gabriella Allaga-Zsebeházi,
  • Gabriella Szépszó

DOI
https://doi.org/10.3390/atmos14030448
Journal volume & issue
Vol. 14, no. 3
p. 448

Abstract

Read online

The Hungarian Meteorological Service has been conducting climate model simulations in order to assess the effects of climate change in the Carpathian Basin and provide data for impact research and stakeholders. Two regional climate models are used: ALADIN-Climate 5.2 (hereafter ALADIN5.2) and REMO2015. They were tested for the past when the lateral boundary conditions were taken from two sources. ERA-Interim reanalysis was used in the evaluation experiment, while the CNRM-CM5 and the MPI-ESM-LR global climate models (GCM) provided the forcings in the control experiments. The model outputs were compared with the CarpatClim-HU observational dataset for the 1981–2000 period. Future projections were carried out with the RCP4.5 and RCP8.5 scenarios, and the results were analyzed for 2021–2050 and 2071–2100. The evaluation of the results focused mainly on climate indices calculated from temperature and precipitation. The validation results showed that REMO2015 assessed the mean temperature well, but the indices based on the minimum and maximum temperature had a significant bias which has to be taken into account when interpreting future changes. The model overestimated the minimum temperature in summer, which might affect the number of tropical nights. Moreover, the maximum temperature was underestimated; thus, the derived indices, such as the occurrence of summer days and hot days, were profoundly underestimated. In comparison, ALADIN5.2 had smaller biases for the high temperature indices; moreover, the number of hot days and extremely cold days was overestimated. Taking future projections into account, we can clearly see that the results of REMO2015 show a much more moderate increase in temperature than ALADIN5.2. The reasons are yet unknown and require further investigation. In spring and summer, the number of wet days was slightly overestimated, while the number of heavy precipitation days was marginally underestimated. The projections showed the highest uncertainty in the changes in mean summer precipitation and other precipitation indices. Although the REMO2015 model assessed a decrease in precipitation, ALADIN5.2 projected an increase in precipitation with a similar magnitude.

Keywords